

Rotational Seismology Measurement Possibilities Based on Fiber-Optic **Rotational Seismometer**

Outline

Rotational Seismology # Physical investigation # Instrumental requirements # Review of existing solutions # Fiber-optic seismometer # AFORS - critical remarks # FOSREM - towards final success # Acknowledgements

Rotational Seismology

A new, emerging field for the study of all aspects of rotational ground motion induced by earthquakes, explosions, and ambient vibrations [Lee et all, *BSSA*, **99,** (2009), 945-957].

Rotational seismology areas of interest [Lee et all, *Seis. Res. Let*., **80**(3), (2009), 479-489]: 1. wide range of geophysical disciplines:

- broadband seismology [Igel et all, Geophys. J. Int., **168**(1), (2006), 182–197],
- strong-motion seismology [Anderson, *The International Handbook of Earthquake and Engineering Seismology,* 2003, Chap. 57, 937-965],
- earthquake physics [Teisseyre et all, Springer, 2006; Teisseyre i inni, Springer, 2008],
- seismic hazards [McGuire, *Earthq. Eng. Struct. D*., **37**, (2008), 329–338],
- seismotectonics [www.geophysik.uni-muenchen.de/~igel/Lectures/Sedi/sedi_tectonics.ppt],
- geodesy [Carey, *Expanding Earth Symposium*, (1983), 365-372],
- physicists using Earth-based observatories for detecting gravitational waves [Ju et all, *Rep. Prog. Phys*., **63**, (2000), 1317–1427; Lantz i inni, *BSSA*, **99, (**2009), 980-989];
- 2. earthquake engineering:

- seismic behaviour of irregular and complex civil structures [Trifunac, *BSSA*, **99, (**2009), 968-97; Mustafa, InTech, 2015].

Physical investigation

1. Geophysical aspects of rotation in earthquakes

[Hinzen, *J. Seisml.*, **16**(4), (2012), 797–814]

Physical investigation

2. Effect of rotation motion on engineering structures

High frequency content

- **- Local vibration of beams and columns**
- Meaningless motion of the building center of mass

Low frequency content

- Higher stress in structural element
- **Overturning moment**
- Horizontal displacement of the center of mass

[Castellani, *2 nd IWGoRS workshop*, Masaryk's College Prague, (2010)]

Instrumental requirements

1. "Seismological" applications [Bernauer et all, *J. Seisml.*, **16**, (2012), 595-602]

- 1. effectively insensitive to linear motion, or at any time, independent measurement of linear and rotational motions must be possible,
- 2. small (mobile) and stable with respect to ambient conditions, including changes of temperature,
- 3. the electrical power supply should be easily managed using batteries, at least combination with solar panels or fuel cells,
- 4. be able to measure amplitudes on the order of 10[−]⁸ rad/s at frequency range 0.01 Hz - 0.1 Hz.

2. "Engineering" applications [Jaroszewicz et all**,** *Sensors***, 16**, (2016), 2161]

- 1. effectively insensitive to linear motion, or at any time, independent measurement of linear and rotational motions must be possible,
- 2. small (mobile) and stable with respect to ambient conditions, including changes of temperature,
- 3. the electrical power supply should be easily managed using batteries, at least in combination with solar panels or fuel cells,
- 4. be able to measure amplitudes up to a few rad/s at frequency range 0.01 Hz - 100 Hz**.**

Rotational sensor → **ROTATIONAL SEISMOMETER (1-, 2- or 3-Axes) field application** → **ROTATIONAL SEISMOGRAPH** network of **seismometers +** precise time source + recording device + network

Review of existing solutions

1. Mechanical type (nondirect based on velocity or accelerometer type seismometer)

Limited: frequency range, max. detectable rotation rate

2. Electro-chemical type (direct based on liquid inertia) hight thermal instability, problem with electroliyte inertia

3. Optical type (direct based on Sagnac-von Laue effect) opimal for seismological applications, but stationary stems or

DISPLACEMENT

JELOCITY

ACCELERATION

[Havskov, Alguacil, *Instrumentation in Earthquake Seismology.* Springer, 2016]

Specialized system based on FOG

 $10¹⁰$ 100

 10

[Post, *Rev. Mod. Phys., 39, 1967*]

[Vali, Shorthil, *Appl. Opt., 15(5), 1976*]

Minimum configuration \rightarrow FOG system optimisation for angle (not rotation rate) detection

[private photo *-1999*] [private photo *-1999*]

1. Autonomous Fiber-Optic Rotational Seismograph

[Jaroszewicz et all, *Acta Geophys.,* **59**, (2011), 578-596]

- applied depolarised light for cost minimisation, - ESPU optimised for detection rotation rate instead of angle (FOG):

$$
\Omega = S_o \tan^{-1} \left[\frac{u(t)}{S_e} \right], \qquad u(t) = \frac{A_{1\omega}}{A_{2\omega}}
$$

AFORS optimisation of optical head:

- L= 15 000 [m], 15 layers, quadrapole-bifilar winding,
- $\alpha = 0.436$ [dB/km],
- loop R=0.34 [m] with permaloy particles,
- $\cdot \ \sigma = 13.16 \text{ [dB]}$,
- cascade polarisers (46 and 55 [dB]),
- depolariser with P=0.002
- $\Delta \lambda = 31,2$ [nm], $\lambda = 1326.9$ [nm], P₁ = 20 [mW],
- S=0.99 [A/W], $I_A = 0.06$ [nA], $R_0 = 163$ [k Ω].

 $\Omega_{\sf min}$ =1.93+10⁻⁹ [rad/sHz^{1/2}]

*2. O*ptical/electronic constant (*S^o* , *S^e*) – system callibration on Earth rotation

AFO

 PGL

3. Operation as seismograph in real field application

COLLEGE IN

A Nowość! | Pomoc | Zaloguj

MILITARY UNIVERSITY OF TECHNOLOGY nstitute of Annlied Physics

Devices

El Credits

FORS - Telemetric Server

F1

 $F2$

FO:

16.291755 E Przeszukaj mapy Pokaż opcje wyszukiwania Drukuj [2] Wyślij @ Link Mapa Satelita Earth Więcej... $\ddot{\mathbb{C}}$ 6 @2010 Google - Dane do Mapy @2010 PPWK - Warunki

 $28 -$

=q&source=s_q&hl=pl&geocode=&q=+50.84380333+N,+16.

więcej v

13.457971572876

6799.9497070312

13599.899414062

217598.390625

After[block]

ADEV

mega

GF Leve GF Refor

GF After

GS Leve

GS T **GS TM**

GS Buf Len

GS Befc GS After

C Refresh

2.5043408E-7 rad/s

950732212E-6 rad/s

0.0000000 rad/s 900501763

10 block

10 block

15 ADEY

64 sps

10 block

Set

11

4. Seismogram recorded in Książ from Honshu earthquake (M=9.0) at 6:58, 11-03-2011

[Jaroszewicz et all, *J. Seismol.,* **16,** (2012), 573-586]

5. Special numerical approch to Ω detection on "drifting signal"

[Kurzych et all, *Sensors,* **14** , (2014), 5459-5469]

Ideal approach (without drift connected with bias phenomena)

K

 K – definied Ω level for start to recording data

> 2. K" – definied for artefactes elimination

AFORS:

 K'

- 1. Too big size (0.6 m diameter)
- 2. Too big low frequency (0.83 Hz)
- 3. Too low max. Ω (0.006 rad/s)
- **Expensive device**
- Limited number of devices

Real situation `drifting signal` (bias connected with enviroment)

13

Fibre-Optic System for Rotational Events & Phenomena Monitoring

FOSREM-SS

[Kurzych et all, *Opto-Electron.Rev.*, 24, (2016), 134-143]

Electronic module

Laser **Power supply**

[Pat. Appl. Pat. PCT/IB2015/059521, 10-12-2015]

FOSREM advantages:

- \triangleright Optimised optical head (5 km SMF-28, diameter 0,25 m);
- \triangleright 3D printing structure low cost;
- ➢ Long-life source (SLED);
- \triangleright Theoretical sensitivity 2.10⁻⁸ rad/s/Hz^{1/2;}
- ➢ Open-loop, digital processing
- ➢ Passband from DC to discrete value from 2.56 - 328.12 Hz);
- \triangleright Max. rotation rate a few rad/s;
- \triangleright Mobility (36x 36x16 cm, weight: 10 kg);
- ➢ Remote control via internet;
- ➢ Power supply: 230AC PCU, PoE 48V from PCU (3 seismometers)

1. Optimisation of optical head fabrication cost

Special set-up for quadrapole-bifilar loop winding 3D printer: MakerBot Replicator 3X i Replicator Z18

2. Laboratory investigation (thermal stability and bandpass accuracy)

FOSREM accuracy FOSREM thermal instability

Climate chamber VCL 7010

[Kurzych et all, *Opto-Electron. Rev.*, **24**, (2016), 134-143]

Ω of Earth for Warsaw (4,45 10⁻⁵ [rad/s]

3. Noise analysis in Allan Variance approach

4. Earthquakes simulation in laboratory conditions

 $\phi(t)$ = ctan⁻¹ $\left[\frac{X-dX}{H}\right]$

$$
\Omega = \frac{d\phi(t)}{dt} = \frac{1}{1 + \left(\frac{X - dX}{H}\right)^2 H} \frac{dX}{dt} \Big|_{dX \ll X} = \frac{H}{\left[H^2 + \left(\frac{X}{H}\right)^2\right]H} \ v(t) = \frac{H}{L^2} \ v(t) = 0.0365 \ v(t), \qquad L = 3.7 \ m, H = 0.5 \ m
$$

4. Earthquakes simulation in laboratory conditions

Eartquake Loma Prieta 17.09.1989

[Jaroszewicz et all**,** *Sensors***, 16**, (2016), 2161]

FOSREM Cloud System

POIR.04.02.00-14-A003/16, EPOS – System Obserwacji Płyty Europejskiej 19/01/2017

[Jaroszewicz et all, 4th Meeting of IWGoRS, Tutzing, Germany, 23rd june, 2016]

Dozens of sensors can operate in one worldwide network, transferring data to a central cloud-based system. The data can be viewed and analyzed from anywhere in the world via the Internet.

Acknowledgements

Janiszewski

Ryszard Świłło PhD, Eng.

Ryszard

Zbigniew Krajewski Mjr, Dr Eng.,

Anna Kurzych M.Sc., Eng.

Prof. Roman Teisseyre PhD, D.Sc. Inst. of Geophysics PAS

Piotr Bobra M.Sc., Eng., Prof. Zbigniew Zębaty **Marshall Access Jerzy Kowalski Robert Jankowski PhD, D.Sc., Eng.** PhD, Eng. PhD, Eng. PhD, Eng. PhD, D.Sc.

Opole Univ. of Technology m-Soft Ltd Gdansk Univ. of Technology